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Abstract
A geometrical model is proposed for the recently observed transformation
under the action of highly localized stresses during the surface scratch test
of the icosahedral phase into a body-centred cubic (BCC) phase, the disordered
version of the B2 phase with the CsCl structure, which occupies a large portion
of the Al–Cu–Fe phase diagram around the Al50(Cu, Fe)50 concentration.
The model is founded on a polytope concept and the concept of the eight-
dimensional root lattice E8. In accordance with these concepts many crystalline
or quasicrystalline structures can be derived from the polytope (the four-
dimensional polyhedron) by fulfilling operations of lowering its local curvature
with subsequent mapping of decurved polytope fragments onto Euclidian
three-dimensional space. The properties of the E8 lattices give foundation
to the possibility of mapping a quasicrystalline structure on a crystalline
structure. The structural transformation is effected through intermediate atomic
configurations coinciding with both structures, which are determined by a four-
dimensional icosahedron (the {3, 3, 5} polytope). For the transformation of
the icosahedron of the icosahedral phase into a rhombic dodecahedron of the
cubic B2 phase, the cubic A15 structure plays the role of an intermediate
configuration since it can be represented as a three-dimensional packing
of linearly interlaced chains of Frank–Kasper polyhedra with coordination
numbers Z = 12 (icosahedron) and Z = 14. The transition between the
rhombic dodecahedron of a B2 structure and the Frank–Kasper polyhedron
with Z = 14 requires insertion of disclination quadruplets into some facets of
the rhombic dodecahedron. The proposed geometrical model can be applied
also to the polymorphic BCC–FCC transformation since the Miller indices of
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the Frank–Kasper polyhedron with Z = 14 coincide with the observed indices
of habit planes of iron martensites.

1. Introduction

The problem of atomic positions in a quasicrystal is still unresolved. It is clear however that
the quasicrystal structure represents in itself a certain packing variant of icosahedral atomic
clusters in a three-dimensional space. Besides the symmetry of point diffraction patterns, this
is confirmed indirectly by several experimental observations:

(1) the relative easiness of the quasicrystal transformation into the relevant crystalline
approximant, in many cases the latter having diffraction patterns quite similar to the
diffraction patterns of the quasicrystal;

(2) the formation of quasicrystals during melt quenching;
(3) the relative easiness of a transition between quasicrystalline and glassy structures under

the action of a stress [1, 2] or during irradiation by accelerated particles [3, 4].

A justification for including in this list points (2) and (3) comes from the icosahedral
configuration of the main building units of metallic liquids and an inheritance of these
configurations by metallic glasses after rapid quenching. It was shown recently by soft x-
ray and photoelectron spectroscopy measurements in the Al–Cu–Fe system that the Al–Cu–
Fe icosahedral quasicrystal and its approximants represent a region of specifically enhanced
stability in the Al–Cu–Fe phase diagram [5]. Moreover, on the experimental curve of Al 3p
densities of states at the Fermi level n(EF ) versus electron to atom ratio e/a, the value
n(EF ) of the icosahedral quasicrystal is positioned at the minimum along the sequence
FCC Al, crystalline Al–Cu Hume–Rothery phases, crystalline ternary phases φ-Al10Cu10Fe,
ω-Al7Cu2Fe, cubic β-phases with B2 (CsCl) structure, orthorhombic, rhombohedral and
pentagonal approximants, icosahedral phase [5]. Bearing in mind this position of the
quasicrystal in the n(EF ) versus e/a relationship, the quasicrystal itself can be regarded as
an intermediate intermetallic compound having some structural proximity with other phases
in this system. Furthermore, the transformation of the icosahedral phase into the disordered,
high-temperature variant of the B2 phase has been observed in this system under the action
of a sliding WC–Co indenter during a surface scratch test [6]. This result can be rationalized
only with some difficulty since the B2 structure does not contain icosahedral coordination
polyhedra in its BCC lattice.

In order to overcome this obstacle we must find

(1) some foundation of the possibility of mapping an icosahedral quasicrystal structure on the
crystal structure;

(2) some mechanism for the reconstruction of the coordination polyhedron itself with the
number of vertices of the polyhedron (atoms) being constant.

Point (1) is needed for a global description of the quasicrystal–crystal transition. Point (2) is
needed for a local description of the same transition. In the case of success one can obtain
the possibility to deal with both types of phase transition, i.e. continuous transformations or
nucleation-and-growth transformations.

The foundation for mapping the quasicrystal on the crystal structure (point (1)) is contained
in several papers in which icosahedral quasicrystals have been derived from the eight-
dimensional root lattice E8 [7–9]. As has been said in [8], ‘a root lattice E8 is a “mother”
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(i.e. praphase) of all quasicrystalline structures’. The concept of the praphase or the prototype
phase was introduced by Aizu [10]. The praphase is the real or hypothetical high symmetrical
structure with its substructures corresponding in the three-dimensional space E3 to structures
of real phases participating in the transformation. The E8 lattice is determined by the maximal
exclusive simple Lie algebra [7–9] and contains the six-dimensional sublattice A3 × A3 (A3

is the FCC lattice). This property determines a possibility to obtain crystalline approximates
with the FCC lattice from the E8 lattice by the cut-projection algorithm. The E8 lattice is its
own self-dual, E8 = E∗

8 , therefore it contains also the six-dimensional sublattice A∗
3 × A∗

3
where A∗

3 is also dual to the A3 lattice, i.e. A∗
3 is the BCC lattice. Since a hexagonal lattice A2

is the sublattice of A3, the E8 lattice determines also the hexagonal close packed structure as
the final result.

The foundation of point (2) is contained in the so-called polytope concept [11] since
close-packed metallic alloys and intermetallic compounds have a tetrahedron-based structure.
The best way to find the description for the reconstruction of the coordination polyhedron
is the use of a {3, 3, 5} polytope as a joining of 600 tetrahedra. In particular, this concept
allows us to analyse different modes of joining tetrahedra. Regarding the melting of metals as
some reconstruction of a pentagonal bipyramid, Rivier and Duffy [12] were able to calculate
the value of the melting entropy in good accordance with the experimental value of R ln 2
(R is the gaseous constant). The reconstruction of the pentagonal bipyramid in [12] was
effected by throwing over between several diagonals. It must be noted that the pentagonal
bipyramid represents in itself a joining of five tetrahedra around a common edge, i.e. this is
a fragment of the {3, 3, 5} polytope [12]. In this paper we present a geometrical model as a
possible description of a transition from icosahedral atomic packing (an icosahedral phase)
to a packing of rhombic dodecahedra (a crystalline β-phase with the CsCl structure). The
observed disorder of the B2 phase after the scratch test, which breaks its symmetry down to a
BCC lattice, does not need to be accounted for in the present model.

2. Model

As was said in the introduction, crystalline structures with FCC, BCC and hexagonal lattices
can be derived from the E8 lattice. So, any joining of clusters as fragments of crystalline or
quasicrystalline structures can be inserted into the E8 lattice. These properties of the root lattice
E8 determine firstly a possibility for a continuous transition from a quasicrystalline phase to a
crystalline phase, and secondly a possibility of a local transition of some quasicrystalline region
into crystalline regions. Bearing in mind the foundation of these two possibilities on the E8

lattice, we must only find a way to reconstruct different coordination polyhedra into each other.
Only finite clusters can be mapped from the {3, 3, 5} polytopes, so the polytope itself

cannot serve as the praphase but a construction of a certain infinite crystallographic lattice.
The {3, 3, 5} polytope is mapping onto itself by the subgroup Y × Y ′ of the SU(2) × Su(2)

group in which the particular unitary group SU(2) is isomorphic to a sphere S3. It means
the eight-dimensionality of the determination of the SU(2) × SU(2) group and, as the final
result it determines an insertion of the {3, 3, 5} into the crystallographic root lattice E8, which
is the densest packing of S7 spheres in eight-dimensional Euclidian space E8 [7–9]. Such a
lattice is the eight-dimensional root lattice E8. The first coordination sphere of E8 consists of
240 vectors of the E8; this multiplicity is isomorphic to joining of two non-crystallographic
(finite) root lattices H4 and τ H4; τ = 1.618 . . . is the golden number. The H4 lattice consists
of 120 vectors connecting the centre of the S3 sphere with vertices of the {3, 3, 5} polytope.
The τ H4 lattice is determined by the τ {3, 3, 5} polytope representing in itself the {3, 3, 5}
polytope multiplied by τ [9]. The sequence of sections of the {3, 3, 5} polytope (starting
from a vertex) by hyperplanes E3 outstanding by distance x4 from the equator will be as
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Figure 1. The plan of the A15 structure with filled circles as A atoms and open circles as B
atoms. A delineation of a Frank–Kasper polyhedron Z14 is shown in the upper part of the figure;
in the lower part of the figure the delineation of a icosahedron Z12 is shown. Two adjacent Z14
polyhedra generate between them an icosahedron Z12, and vice versa: two adjacent icosahedra Z12
generate between them a Frank–Kasper polyhedron Z14. All atoms of the A15 structure belong
simultaneously to Z14 and Z12 networks.

follows: a point (x4 = 2), an icosahedron (x4 = τ ), a dodecahedron (x4 = 1), an icosahedron
(x4 = τ −1), an icosidodecahedron (x4 = 0) [11, 13]. Thus, the section of the join of polytopes
{3, 3, 5}∪τ {3, 3, 5} by the E3 hyperplane (x4 = τ ) represents in itself the {5, 3} dodecahedron
containing the {3, 5} icosahedron in it:

({3, 3, 5} ∪ τ {3, 3, 5}) ∩ E3(x4 = τ ) = {3, 5} ∪ {5, 3}, (1)

where {3, 5} ⊂ {3, 3, 5}, {5, 3} ⊂ τ {3, 3, 5}. The E3 hyperplane at x4 = τ is the nearest to
the north pole x4 = 2 and intersects simultaneously both {3, 3, 5} and τ {3, 3, 5}, and those are
the reasons for the selection of that hyperplane.

Due to the impossibility of subdividing E3 into tetrahedra, clusters having icosahedral
order can achieve to a comparatively small (limited) size only, hence an energetically
advantageous limiting size does evidently exist for clusters of the {3, 3, 5} polytope which
are mapped into the E3 space. Eight out of 20 vertices of the dodecahedra form a cube which
is capable already of fulfilling subdivision of the E3 space, and so the cluster contained in (1)
and determined by three sections of the {3, 3, 5} polytope (x4 = 2, x4 = τ , x4 = 1) can be
regarded as a limiting one during mapping of the {3, 3, 5} polytopes into the E3 space.

This cluster of the {3, 3, 5} polytope with 21 vertices corresponds uniquely to the unit
cell of the A15 structure, i.e. the certain set of vectors from E8 determines uniquely the unit
cell of the A15 structure:

E8 ⊃ {3, 3, 5} ⊃ A15 unit cell ⊂ A15. (2)

The A15 structure (figure 1) represents a centred cube (Si positions) in which the distorted
icosahedron is inscribed (Cr positions). Thus the unit cell of the A15 phase is the energetically
admissible limit for mapping the cluster from the {3, 3, 5} polytope into the E3 space.

If Y is the rotation group of an icosahedron consisting of 60 elements u(�k, 2π/n), where
�k is the unit vector of the icosahedron axis just about which the rotation on the 2π/n angle
is effected, hence Y ′ is the group consisting of 120 elements of the form u′(�k, 2π/n) and
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Figure 2. Insertion of the disclination quadruplet into a rhombus. (a) A triangulated rhombus;
(b) skipping a diagonal is the operation of two-dimensional enlargement; (c) drawing the new
diagonal is the operation of two-dimensional subdivision; (d) equalization of edge lengths, i.e. a
relaxation to the new shortest interatomic bond corresponding to the minimum of the interatomic
interaction potential. Steps (a)–(b) correspond to the disclination quadruplet k, i.e. to the
nontrivial product of the enlargement and subdivision operations. The quadruplet k changes
the number of edges meeting in the quadrangle vertices by ±1; this is equivalent to inserting
+2π/ l, −2π/ l, +2π/ l, −2π/ l-disclination through each vertex of the quadrangle. The fulfilment
of the operations (a)–(d) did not change topological and metric parameters of this rhombus; only
the rhombus orientation in the plane has been changed.

u′(�k, 2π/n + 2π) = −u′(�k, 2π/n), these elements are uniquely corresponding to ±2π/n
disclinations which were inserted into the icosahedron along the �k axis. A disclination changes
the space curvature and is characterized by the unit vector of the axis �k and by the rotation
magnitude ±2π/n about this axis. For example, a −2π/5-disclination inserted along the
fivefold axis of the icosahedron by substituting two hexagonal caps instead of pentagonal
ones transforms it into the Frank–Kasper polyhedron with 14 vertices (Z14). At n �= 1 the
disclination changes the vertex number of the icosahedron, in the case n = 1 the only action of
the 2π-disclination (or disclination quadruplet [12]) corresponding to the element −1 of the Y ′
group is the permutation between long and short diagonals of the corrugated rhombus consisting
of two adjacent faces of the icosahedron (figure 2). By inserting a −2π/5-disclination into
the {3, 3, 5} polytope a rod composed from Frank–Kasper polyhedra5 Z14 = [512, 62] will
be generated. The crystalline A15 phase can be assembled from these Z14 rods [13]. That
phase can be also regarded as assembled from icosahedra Z12 = [512] joined in rods along
the threefold symmetry axis in the face-to-face mode. So, for the A15 structure relations are
valid:

A15 = ∪[512] = ∪[512, 62], (3)

where the polyhedron Z14 is the result of the action of the −2π/5-disclination on the
icosahedron.

Skipping six edges of the icosahedron does not change its Euler characteristic χ =
V − E + F (V , E , F denote respectively numbers of vertices, edges and faces) but results in a
topological cuboctahedron which is capable of transforming into the ideal cuboctahedron [412]

5 The symbol [512, 62] denotes a polyhedron with 12 vertices in which five edges are meeting and two vertices in
which six edges are meeting.
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Figure 3. An Archimedian cuboctahedron (thick lines) as the first coordination sphere for any
point of an FCC lattice (thin lines) delineated between two adjacent unit cells. Square faces of
the cuboctahedron are parallel to cube faces {100}; triangular faces are parallel to octahedral
faces {111}. The drawing of diagonals (conditional edges) on all square faces of a cuboctahedron
transforms the cuboctahedron into a topological icosahedron. Inversely, skipping six edges of the
icosahedron transfers it into the topological cuboctahedron.

(figures 3, 4). Similarly, a delineation of corrugated rhombuses from pairs of adjacent faces in
the Z14 polyhedron, and the permutation between short and long diagonals in these rhombuses
by insertion of 2π-disclinations with the subsequent skipping of edges does not change χ and
generates a topological rhombic dodecahedron [46, 38], which is capable of transforming into
the cubic rhombic dodecahedron (figure 5). All these transformations correspond to elements
of the Y ′ × Y ′ group. In their turn, inner automorphisms of E8 correspond to these elements
of the Y ′ × Y ′ group, hence the possibility of transformations of clusters forming the A15
structure is determined by the insertion of the A15 unit cell into E8 (relation (2)). Hence
reversible transformations

[512] ↔ [412] and [512, 62] ↔ [46, 38] (4)

and the A15 unit cell itself are determined by mapping of clusters from the {3, 3, 5} polytope
(or E8) into E3. The transformation indicated above can be regarded as energetically tolerable
since

(i) the number of cluster vertices does not change;
(ii) lengths of interatomic bonds (edges) and valence angles between them in initial and final

configurations are varied by not more than 10%.

The cuboctahedron and rhombic dodecahedron are coordination polyhedra of FCC and
BCC lattices respectively; these lattices in their turn are sublattices A3 and A∗

3 of the autodual
lattice E8 = E∗

8 . The algorithm was proposed in [9] permitting us to obtain icosahedral and
tetrahedral quasicrystals and all possible approximants from E8. By joining relations (2)–(4)
one can obtain a scheme:

[412] ⊂ A3 ⊂ E8 = E∗
8 ⊃ A∗

3 ⊃ [46, 38]


 ∪ 

[512] ⊂ A15 ← {3, 3, 5} → A15 ⊃ [512, 62];

(5)

the said scheme together with the algorithm of [9] represents transformations between FCC
and BCC structures through E8 as the praphase both on global and local levels. Naturally,
the transformation of the icosahedral phase into the B2 phase with BCC structure is also
inside the framework of this scheme. A coordination polyhedron of the HCP structure is the
hexacuboctahedron, so this scheme describes also transformations with the participation of the
HCP structure (see figure 4(b)).

The experimentally observed habit planes of iron martensite in the coordinate axes of the
FCC phase are {15.10.3}, {522}, {755} [14]. This is in exact coincidence with indices of faces
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Figure 4. Transformation of a cuboctahedron of the FCC lattice (a) and a hexacuboctahedron of
the HCP structure (b) into an icosahedron. Coordination polyhedra of close-packed structures are
shown by thin lines; the final icosahedral configuration is shown by thick lines. The simultaneous
rotation of triangular faces about their normals switches the cuboctahedron into the icosahedron.
The necessary value of the rotation angle is 22.24◦. Arrows on square faces of the cuboctahedron
indicate directions of atomic displacements during the transformation. A coordination polyhedron
of the HCP structure can be obtained from the cuboctahedron of the FCC lattice by the rotation
of the upper half of the polyhedron on 60◦ about the threefold symmetry axis. Square faces of
the hexacuboctahedron share a common edge. The hexagonal axis 〈0001〉 is parallel to the figure
plane.

of the Frank–Kasper polyhedron Z14 in a cubic coordinate system when the 〈111〉 direction
is parallel to the sixfold symmetry axis of the Z14 polyhedron (figure 6). This coincidence
can be treated as evidence of the proposed mechanism of the polymorphic transformation
through the E8 lattice as the praphase. Further evidence is the phase transition in the solid
molecular O2-crystals from the rhombohedral (distorted FCC) β-phase to the γ -phase with the
A15 structure [15]. It is interesting that in the structure of the γ -O2 phase O2 molecules having
a spherical distribution of the electron density are positioned in vertices of the BCC lattice (Si
positions) while disc-shaped molecules are positioned in icosahedron vertices (Cr positions)
while in the low temperature β-phase O2 molecules have a linear dumbbell configuration.

Bearing in mind above mentioned connection of the A15 structure with the root lattice
E8 the results of [16] where change of the sequence of operations for decreasing the polytope
curvature leads to the polymorphism of the Mg32(Zn, Al)49 phase (Bergman phase) seem
far from accidental. The existence of an intermediate configuration of this phase between
the BCC-modification and the primitive cube modification was found in [16], and this
intermediate configuration has the A15 structure. According to the authors of [16], the origin
of polymorphism relies upon the existence of equivalent, alternative steps along the different
stages of the polytope decurving.

The transformation of the cuboctahedron into the icosahedron has been suggested as
a microscopic mechanism for the transition between two space isomers of the carboborane
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Figure 5. The transformation of a rhombic dodecahedron of a BCC lattice into a Frank–Kasper
polyhedron Z14. Thin lines and unprimed numbers designate respectively edges and vertices of
the rhombic dodecahedron; thick lines and primed numbers designate edges and vertices of the
resulting Frank–Kasper polyhedron Z14. Any vertex of the rhombic dodecahedron with number
N becomes the vertex N ′ of the Z14 polyhedron after the transformation. (a) The figure plane is
parallel to {110} of the BCC lattice; the threefold symmetry axis is passing through vertices 13
and 14 along 〈111〉 in the plane of the figure. The same axis also is in coincidence with the sixfold
symmetry axis of the Z14 polyhedron passing through vertices 13′and 14′. (b) The figure plane is
perpendicular to the threefold symmetry axis of the rhombic dodecahedron and at the same time is
perpendicular to the sixfold symmetry axis of the Frank–Kasper polyhedron Z14. The projections
of vertices 13 and 14 are in coincidence with the projections of vertices 13′and 14′. The projections
of edges 13–6, 13–4 and 13–2 of the rhombic dodecahedron are in coincidence with the projections
of edges 13′–6′, 13′–4′and 13′–2′of the Z14 polyhedron.

Figure 6. Indexing of a Frank–Kasper polyhedron Z14 in cubic axes. The flat development of the
Z14 is shown with Miller indices inscribed on its faces. The 〈111〉 direction of a cubic lattice is
parallel to the sixfold symmetry axis of a Z14 polyhedron.

molecule (C2B10H12) having the icosahedral configuration [17]. The scheme of the
transformation of the rhombic dodecahedron into the Frank–Kasper polyhedron with 14
vertices was first published by one of the authors for an explanation of certain diffraction
anomalies generated in iron and vanadium-based alloys by the ion irradiation [18].
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The proposed scheme of the transformation is in intimate proximity to the main concept
of the Bain model of the transition from FCC to BCC structure [19]. According to Bain one
must find the fragment of the lattice in the initial phase, which will be topologically equivalent
to some fragment of the lattice in the resulting phase, and subject this fragment to topological
deformations so as to achieve a full coincidence with the structure of the final phase with
respect to symmetry and metric relationships.

Such an approach can be called ‘a chess-board concept’: for a drawing of a chess-
board, one need not draw both types of square; it is enough to draw only black (or white)
squares. Taking the vertices of the squares as atoms, one can state that these atoms belong
to ‘a black square phase’ and equally well that they belong to ‘a white square phase’. Then,
the problem of the description of the phase transition is reduced to revealing the intermediate
atomic configuration, which will be equivalent to the three-dimensional chess-board formed by
atoms. The A15 structure is just this three-dimensional chess-board in which Z12 icosahedra
are playing the role of ‘white square cells’ while Z14 polyhedra are playing the role of ‘black
square cells’, and this three-dimensional chess-board has been found as the substructure of the
root lattice E8.

Since the local atomic structure of the icosahedral quasicrystal represents some joining of
icosahedra, the transition of a such a structure into the B2 phase in the frame of the proposed
geometric scheme can be reduced to specified distortions of certain edges of the icosahedra in
such a way that the subdivision of space into a set of Frank–Kasper polyhedra with Z = 14 will
become more distinct. Also, some ordering in the occupation of certain atomic positions by
different alloy components must take place if one is furthermore seeking the CsCl stochiometry
and atomic ordering.

Regarding the Al–Cu–Fe system, it was pointed out that the series of intermetallic
compounds dealt with in the present paper (namely, icosahedral, B2 cubic and A15-type
γ -Al39Cu61) all fall close to a constant electron-to-atom ratio e/a = 1.8e−/at [20]. This
provides further evidence in favour of the transition mechanism that was studied here. In the
frame of this approach, the operation for a diagonal throwing over corresponds to changing the
selection of the occupation domain in the cut-and-projection algorithm [9]. This circumstance
connects a local approach with the global approach in the description of quasicrystal–crystal
and crystal–crystal transitions.

3. Conclusion

Our conclusion will be threefold.

(1) A structural realization of the algebraic geometry approach suggests a structural model for
the experimentally observed transformation of an icosahedral phase into a cubic crystalline
phase with the BCC disordered B2 (CsCl) structure. This transition between icosahedral
and BCC crystalline phase can be described in the framework of the root lattice E8 in an
eight-dimensional space as the hypothetical praphase with the symmetry group playing the
role of the supergroup for both participants of the transition. The special subset of vectors
of the E8 coinciding topologically with the unit cell of the A15 structure (Cr3Si-type)
in the three-dimensional Euclidian space was found; this subset can be regarded as an
intermediate configuration during transition between FCC, BCC and HCP structures. The
properties of the E8 lattice give foundation to the possibility of mapping a quasicrystalline
structure on a crystalline structure (and vice versa).

(2) For the transformation of the icosahedron of the icosahedral phase into a rhombic
dodecahedron of the cubic B2 phase, the cubic A15 structure plays the role of an
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intermediate configuration since it can be represented as a three-dimensional packing
of linear interlaced chains of Frank–Kasper polyhedra with coordination numbers Z of
12 and 14. The transition between the rhombic dodecahedron of the B2 structure and the
Frank–Kasper polyhedron with Z = 14 requires insertion of a disclination quadruplet
into some rhombic faces of the dodecahedron.

(3) The symmetry foundation of this model is the only one possible and due to this uniqueness,
the proposed model is applicable to the description of any polymorphic transition in
metallic tetrahedral structures.
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